3.1571 \(\int \frac{(a+b x)^{3/2}}{(c+d x)^{2/3}} \, dx\)

Optimal. Leaf size=416 \[ -\frac{54\ 3^{3/4} \sqrt{2-\sqrt{3}} (b c-a d)^2 \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right ) \sqrt{\frac{\sqrt [3]{b} \sqrt [3]{c+d x} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+b^{2/3} (c+d x)^{2/3}}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}{\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}\right )|-7+4 \sqrt{3}\right )}{55 \sqrt [3]{b} d^3 \sqrt{a+b x} \sqrt{-\frac{\sqrt [3]{b c-a d} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}}}-\frac{54 \sqrt{a+b x} \sqrt [3]{c+d x} (b c-a d)}{55 d^2}+\frac{6 (a+b x)^{3/2} \sqrt [3]{c+d x}}{11 d} \]

[Out]

(-54*(b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(1/3))/(55*d^2) + (6*(a + b*x)^(3/2)*(c
 + d*x)^(1/3))/(11*d) - (54*3^(3/4)*Sqrt[2 - Sqrt[3]]*(b*c - a*d)^2*((b*c - a*d)
^(1/3) - b^(1/3)*(c + d*x)^(1/3))*Sqrt[((b*c - a*d)^(2/3) + b^(1/3)*(b*c - a*d)^
(1/3)*(c + d*x)^(1/3) + b^(2/3)*(c + d*x)^(2/3))/((1 - Sqrt[3])*(b*c - a*d)^(1/3
) - b^(1/3)*(c + d*x)^(1/3))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*(b*c - a*d)^(1/3
) - b^(1/3)*(c + d*x)^(1/3))/((1 - Sqrt[3])*(b*c - a*d)^(1/3) - b^(1/3)*(c + d*x
)^(1/3))], -7 + 4*Sqrt[3]])/(55*b^(1/3)*d^3*Sqrt[a + b*x]*Sqrt[-(((b*c - a*d)^(1
/3)*((b*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3)))/((1 - Sqrt[3])*(b*c - a*d)^(1
/3) - b^(1/3)*(c + d*x)^(1/3))^2)])

_______________________________________________________________________________________

Rubi [A]  time = 0.768847, antiderivative size = 416, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158 \[ -\frac{54\ 3^{3/4} \sqrt{2-\sqrt{3}} (b c-a d)^2 \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right ) \sqrt{\frac{\sqrt [3]{b} \sqrt [3]{c+d x} \sqrt [3]{b c-a d}+(b c-a d)^{2/3}+b^{2/3} (c+d x)^{2/3}}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}{\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}}\right )|-7+4 \sqrt{3}\right )}{55 \sqrt [3]{b} d^3 \sqrt{a+b x} \sqrt{-\frac{\sqrt [3]{b c-a d} \left (\sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )}{\left (\left (1-\sqrt{3}\right ) \sqrt [3]{b c-a d}-\sqrt [3]{b} \sqrt [3]{c+d x}\right )^2}}}-\frac{54 \sqrt{a+b x} \sqrt [3]{c+d x} (b c-a d)}{55 d^2}+\frac{6 (a+b x)^{3/2} \sqrt [3]{c+d x}}{11 d} \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x)^(3/2)/(c + d*x)^(2/3),x]

[Out]

(-54*(b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(1/3))/(55*d^2) + (6*(a + b*x)^(3/2)*(c
 + d*x)^(1/3))/(11*d) - (54*3^(3/4)*Sqrt[2 - Sqrt[3]]*(b*c - a*d)^2*((b*c - a*d)
^(1/3) - b^(1/3)*(c + d*x)^(1/3))*Sqrt[((b*c - a*d)^(2/3) + b^(1/3)*(b*c - a*d)^
(1/3)*(c + d*x)^(1/3) + b^(2/3)*(c + d*x)^(2/3))/((1 - Sqrt[3])*(b*c - a*d)^(1/3
) - b^(1/3)*(c + d*x)^(1/3))^2]*EllipticF[ArcSin[((1 + Sqrt[3])*(b*c - a*d)^(1/3
) - b^(1/3)*(c + d*x)^(1/3))/((1 - Sqrt[3])*(b*c - a*d)^(1/3) - b^(1/3)*(c + d*x
)^(1/3))], -7 + 4*Sqrt[3]])/(55*b^(1/3)*d^3*Sqrt[a + b*x]*Sqrt[-(((b*c - a*d)^(1
/3)*((b*c - a*d)^(1/3) - b^(1/3)*(c + d*x)^(1/3)))/((1 - Sqrt[3])*(b*c - a*d)^(1
/3) - b^(1/3)*(c + d*x)^(1/3))^2)])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 39.3866, size = 355, normalized size = 0.85 \[ \frac{6 \left (a + b x\right )^{\frac{3}{2}} \sqrt [3]{c + d x}}{11 d} + \frac{54 \sqrt{a + b x} \sqrt [3]{c + d x} \left (a d - b c\right )}{55 d^{2}} + \frac{54 \cdot 3^{\frac{3}{4}} \sqrt{\frac{b^{\frac{2}{3}} \left (c + d x\right )^{\frac{2}{3}} - \sqrt [3]{b} \sqrt [3]{c + d x} \sqrt [3]{a d - b c} + \left (a d - b c\right )^{\frac{2}{3}}}{\left (\sqrt [3]{b} \sqrt [3]{c + d x} + \left (1 + \sqrt{3}\right ) \sqrt [3]{a d - b c}\right )^{2}}} \sqrt{\sqrt{3} + 2} \left (a d - b c\right )^{2} \left (\sqrt [3]{b} \sqrt [3]{c + d x} + \sqrt [3]{a d - b c}\right ) F\left (\operatorname{asin}{\left (\frac{\sqrt [3]{b} \sqrt [3]{c + d x} - \left (-1 + \sqrt{3}\right ) \sqrt [3]{a d - b c}}{\sqrt [3]{b} \sqrt [3]{c + d x} + \left (1 + \sqrt{3}\right ) \sqrt [3]{a d - b c}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{55 \sqrt [3]{b} d^{3} \sqrt{\frac{\sqrt [3]{a d - b c} \left (\sqrt [3]{b} \sqrt [3]{c + d x} + \sqrt [3]{a d - b c}\right )}{\left (\sqrt [3]{b} \sqrt [3]{c + d x} + \left (1 + \sqrt{3}\right ) \sqrt [3]{a d - b c}\right )^{2}}} \sqrt{a - \frac{b c}{d} + \frac{b \left (c + d x\right )}{d}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x+a)**(3/2)/(d*x+c)**(2/3),x)

[Out]

6*(a + b*x)**(3/2)*(c + d*x)**(1/3)/(11*d) + 54*sqrt(a + b*x)*(c + d*x)**(1/3)*(
a*d - b*c)/(55*d**2) + 54*3**(3/4)*sqrt((b**(2/3)*(c + d*x)**(2/3) - b**(1/3)*(c
 + d*x)**(1/3)*(a*d - b*c)**(1/3) + (a*d - b*c)**(2/3))/(b**(1/3)*(c + d*x)**(1/
3) + (1 + sqrt(3))*(a*d - b*c)**(1/3))**2)*sqrt(sqrt(3) + 2)*(a*d - b*c)**2*(b**
(1/3)*(c + d*x)**(1/3) + (a*d - b*c)**(1/3))*elliptic_f(asin((b**(1/3)*(c + d*x)
**(1/3) - (-1 + sqrt(3))*(a*d - b*c)**(1/3))/(b**(1/3)*(c + d*x)**(1/3) + (1 + s
qrt(3))*(a*d - b*c)**(1/3))), -7 - 4*sqrt(3))/(55*b**(1/3)*d**3*sqrt((a*d - b*c)
**(1/3)*(b**(1/3)*(c + d*x)**(1/3) + (a*d - b*c)**(1/3))/(b**(1/3)*(c + d*x)**(1
/3) + (1 + sqrt(3))*(a*d - b*c)**(1/3))**2)*sqrt(a - b*c/d + b*(c + d*x)/d))

_______________________________________________________________________________________

Mathematica [C]  time = 0.201678, size = 108, normalized size = 0.26 \[ \frac{3 \sqrt [3]{c+d x} \left (27 (b c-a d)^2 \sqrt{\frac{d (a+b x)}{a d-b c}} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\frac{b (c+d x)}{b c-a d}\right )+2 d (a+b x) (14 a d-9 b c+5 b d x)\right )}{55 d^3 \sqrt{a+b x}} \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x)^(3/2)/(c + d*x)^(2/3),x]

[Out]

(3*(c + d*x)^(1/3)*(2*d*(a + b*x)*(-9*b*c + 14*a*d + 5*b*d*x) + 27*(b*c - a*d)^2
*Sqrt[(d*(a + b*x))/(-(b*c) + a*d)]*Hypergeometric2F1[1/3, 1/2, 4/3, (b*(c + d*x
))/(b*c - a*d)]))/(55*d^3*Sqrt[a + b*x])

_______________________________________________________________________________________

Maple [F]  time = 0.045, size = 0, normalized size = 0. \[ \int{1 \left ( bx+a \right ) ^{{\frac{3}{2}}} \left ( dx+c \right ) ^{-{\frac{2}{3}}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x+a)^(3/2)/(d*x+c)^(2/3),x)

[Out]

int((b*x+a)^(3/2)/(d*x+c)^(2/3),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x + a\right )}^{\frac{3}{2}}}{{\left (d x + c\right )}^{\frac{2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^(3/2)/(d*x + c)^(2/3),x, algorithm="maxima")

[Out]

integrate((b*x + a)^(3/2)/(d*x + c)^(2/3), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (b x + a\right )}^{\frac{3}{2}}}{{\left (d x + c\right )}^{\frac{2}{3}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^(3/2)/(d*x + c)^(2/3),x, algorithm="fricas")

[Out]

integral((b*x + a)^(3/2)/(d*x + c)^(2/3), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\left (a + b x\right )^{\frac{3}{2}}}{\left (c + d x\right )^{\frac{2}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x+a)**(3/2)/(d*x+c)**(2/3),x)

[Out]

Integral((a + b*x)**(3/2)/(c + d*x)**(2/3), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (b x + a\right )}^{\frac{3}{2}}}{{\left (d x + c\right )}^{\frac{2}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^(3/2)/(d*x + c)^(2/3),x, algorithm="giac")

[Out]

integrate((b*x + a)^(3/2)/(d*x + c)^(2/3), x)